1. **Course number and name**
EE 341: Signals and Systems

2. **Credits and contact hours**
3.0 (three lecture hours per week)

3. **Instructor’s or course coordinator’s name**
Krishnamoorthy Sivakumar

4. **Text book, title, author, and year**

 Other supplemental materials
 Instructor notes will be provided for some topics.

5. **Specific course information**
 a. **Catalog description:** Discrete and continuous-time signals, LTI systems, convolution, sampling, Fourier transform, filtering, DFT, amplitude modulation, probability applications.
 b. **Prerequisites or co-requisites:** EE 321 with a C or better; STAT 360 with a C or better or concurrent enrollment, or STAT 443 with a C or better or concurrent enrollment; certified major in Electrical Engineering, Computer Science, or Computer Engineering.

6. **Specific goals for the course**
At the end of this course, students must be able to:
 - Analyze linear time-invariant systems in time-domain (continuous- and discrete-time) (1c, 1d)
 - Analyze linear time-invariant systems in frequency-domain (continuous-time) (1c)
 - Compute the spectrum of a sampled signal and its reconstruction from the samples, based on the spectrum of a continuous-time signal (1c)
 - Design frequency-selective analog filters (2a, 2g)
 - Apply frequency-domain techniques to analyze different modulation schemes in communication systems. (1c, 2a)
 - Apply probability theory to simple problems in communication systems. (1c, 2a)

7. **Brief list of topics to be covered**
 - Elementary signals and examples of systems, system properties,
 - Linear time-invariant (LTI) systems: impulse response, convolution, properties of convolution and its application to LTI systems,
 - Fourier series (FS) and Fourier transform (FT),
 - Application of FS and FT to LTI systems, Filtering, Bandwidth,
 - Sampling analog signals and their reconstruction from samples,
• Filter design,
• Application to communication systems — Amplitude modulation schemes, demodulation,
• Discrete time Fourier transform (DTFT),
• Probability Applications — Binary pulse amplitude modulation, Information Theory and Huffman Coding.