1. **Course number and name**
EE 334: Computer Architecture

2. **Credits and contact hours**
3.0 (three lecture hours per week)

3. **Instructor’s or course coordinator’s name**
José Delgado-Frias

4. **Text book, title, author, and year**
Other supplemental materials
Instructor notes/slides will be provided for some topics.

5. **Specific course information**
a. **Catalog description:** Modern developments in digital system design, parallel structures, pipelining, input/output, high speed circuits, experience in digital system design; emphasis on CPU architecture.
b. **Prerequisites or co-requisites:** EE 234 with a C or better; certified major in Electrical Engineering, Computer Science, or Computer Engineering.

6. **Specific goals for the course**
At the end of this course, students must be able to:
- Use metrics to assess the performance of a computer system (1b, 1c, 1d, 1e, 2c)
- Determine the control requirements/lines for execution of specific instructions (1b, 1e)
- Analyze performance and instruction throughput of single-cycle, multi-cycle, and pipelined implementations of an instruction set (1b, 1c, 1d, 1e, 2b)
- Detect pipeline hazards and identify potential solutions to those hazards and evaluate them. (1a, 1b, 1c, 6a, 6b, 6c)
- Identify cache design parameters and determine how they affect cache hit rate and performance (2b, 2c, 2e)
- Map a virtual address into a physical address (6c)

7. **Brief list of topics to be covered**
- Instruction set architecture,
- Computer arithmetic, number representation, floating point numbers and arithmetic,
- Processor datapath and single instruction,
- Control signals,
- Data hazards and forwarding technique,
- Control (branch/jump) hazards,
- Branch/jump prediction scheme to mitigate control hazards,
- Instruction level parallelism,
- Memory Hierarchy and cache,
- Virtual memory.