1. **Course number and name**
 EE 234: Microprocessor Systems

2. **Credits and contact hours**
 4 (3 lecture hours and 3 lab hours per week)

3. **Instructor’s or course coordinator’s name**
 Clint Cole

4. **Text book, title, author, and year**
 Other supplemental materials
 Blackboard circuit board (*Real Digital*); Vivado Webpack (*Xilinx*); Instructor notes and slides for some topics.

5. **Specific course information**
 a. **Catalog description:** Microprocessor system architecture, instruction sets, and interfacing; assembly language programming
 b. **Prerequisites or co-requisites:** CptS 122 with a C or better; EE 214 with a C or better.

1. **Specific goals for the course**
 At the end of this course, students must be able to:
 - Understand computer system architecture, including memory systems and peripheral systems (1,2)
 - Understand Microprocessor architecture, including instruction formatting and execution timing (1,2,6)
 - Understand interrupt systems, their use, and programming (1,2,6)
 - Know and use the ARM assembly instruction set (2)
 - Understand serial communications and protocols, and how and when to use UART, I2C, and SPI busses (2,6)
 - Know when to use interrupts and when to use polling (2)
 - Understand system timers and their use (2)
 - Be able to construct an interrupt-based software system to periodically acquire data, store it, and send/receive data over a serial port (1,2)
 - Be able to write efficient C and/or Assembly programs to access on-board peripherals and perform general computations (1,2,6)
 - Be able to present technical design details to peers and instructional personnel (3)

7. **Brief list of topics to be covered**
 - Review of digital circuits, with emphasis on arithmetic circuits and ALUs,
 - Overview of microprocessors and microcontrollers,
 - Microprocessor architectures and block diagrams,
• Microprocessor instructions, controller, and execution environment,
• Real-time environments and the need for interrupts,
• Interrupt handling,
• Timer/counter modules and their use,
• AXI bus overview, signaling protocols, and timing/control,
• Use of custom IP blocks,
• Serial busses: UART, I2C, SPI and USB,
• Memory interfaces,
• PWM and PDM signals and their use,
• Embedded software system design and partitioning.