1. **Course number and name**
 EE 221: Numerical Computing for Engineers

2. **Credits and contact hours**
 2 credits, 2 lecture hours

3. **Instructor’s or course coordinator’s name**
 Ahmed Abu Hajar

4. **Textbook, title, author, and year**

 Other supplemental materials

5. **Specific course information**
 a. **Catalog description**: Solutions to engineering problems making extensive use of modern software tools (MATLAB).
 b. **Prerequisites or corequisites**: Math:220, Math:172, Linear algebra, calculus II and complex numbers.

6. **Specific goals for the course**
 By the end of the course, students will be able to
 - Competently use the MATLAB programming environment (2a, 2b, 2c, 2d, 2e, 2g).
 - Understand the vector-matrix paradigm underlying MATLAB (6a, 6b, 6c).
 - Understand the consequences of finite precision on numeric computational and understand the inherent limits of many numerical methods (2b, 6a, 6b, 6c, 7a, 7b, 7f, 7g).
 - Translate a textual or mathematical descriptions of a solution into a well-written computer based solution using MATLAB (1a, 1b, 1c, 1d, 1e).
 - Choose between various numerical methods to use the right method for a particular problem (6b, 7a, 7b, 7f, 7g).
• Understand the mathematical concepts upon which numerical methods rely.

7. Brief list of topics to be covered
 • Introduction to MATLAB:
 Running interactively
 Syntax (including colon notation), vectors, matrices
 Mathematical operations, built-in commands
 Complex numbers, strings
 Plotting
 • Programming:
 m-files
 Flow control, relational operators
 Scope
 Variable number of function arguments
 Style, comments, organization
 Debugging
 • Finite precision, inherent algorithmic errors
 • Root-finding
 • Solving systems of equations:
 Review of linear algebra and related operations
 Gaussian elimination
 • Least-squares fitting
 • Numerical integration