1. Course number and name
 CptS 427: Computer Security

2. Credits and contact hours
 3 credits, 3 lecture hours

3. Instructor’s or course coordinator’s name
 Adam Hahn

4. Textbook, title, author, and year
 Other supplemental materials
 Instructor notes/slides and various papers/websites will be provided for some topics.

5. Specific course information
 a. Catalog description: Examines cyber vulnerabilities and attacks against computer
 systems and networks; includes security protection mechanisms, cryptography,
 secure communication protocols, information flow enforcement, network
 monitoring, and anonymity techniques.
 b. Prerequisites or corequisites: CPT S 360 with a C or better or CPT S 370 with a
 C or better; MATH 216 with a C or better; certified major in Computer Science,
 Computer Engineering, Electrical Engineering, or Software Engineering.

6. Specific goals for the course
 By the end of the course, students will be able to
 - Demonstrate an understanding of the principles of computer/network security,
 including basic threats and attacks to modern computer systems and networks (1a,
 1b, 1c, 1d, 2a, 2b).
 - Utilize threat modeling methodologies to identify potential threats and necessary
 protection for systems (1a, 1b, 1c, 1d, 2a, 2d).
 - Implement access control mechanisms and identify weaknesses within the
 approaches (1a, 1b, 1c, 1d).
 - Identify software vulnerabilities, develop exploits for them, and implement
 mitigations (1a, 1b, 1c, 1d).
 - Utilize basic cryptographic operations to protect communications and data stored
 on a system (1a, 1b, 1c, 1d).
 - Identify privacy and anonymity threats within current systems and appropriate
 protection techniques (2b, 2c, 4a).
 - Related current events related to cybersecurity to the techniques and principles
 discussed in class (4a, 4f, 7d, 7g).
7. **Brief list of topics to be covered**
 - Basic security principles (CIA, Design Principles)
 - Threat modeling techniques
 - Access control mechanisms (DAC, MAC, HMAC)
 - Hash algorithms (SHA, DES)
 - Symmetric key algorithms (AES, DES)
 - Asymmetric key algorithms (RSA, Diffie-Hellman)
 - Pseudorandom number generation (PRNG)
 - Transport Layer Security (TLS)
 - Software vulnerabilities and protections
 - Web vulnerabilities and protections