1. **Course number and name**
 CptS 423: Software Design Project II [CAPS]

2. **Credits and contact hours**
 3 credits, 3 lecture hours

3. **Instructor’s or course coordinator’s name**
 Aaron Crandall

4. **Textbook, title, author, and year**

 Other supplemental materials
 IEEE Standards for Software Engineering
 Scott Berkun’s Blog on software engineering and project management addressing creativity, leadership, philosophy, and speaking:
 <http://scottberkun.com/blog/>.

5. **Specific course information**
 a. **Catalog description:** Laboratory/group design project for large-scale software development, requirements analysis, estimation, design, verification techniques.
 b. **Prerequisites or corequisites:** CPT S 421 with a C or better; certified major in Computer Science, Computer Engineering, Electrical Engineering, or Software Engineering.

6. **Specific goals for the course**
 By the end of the course, students will be able to
 - Identify, formulate, analyze and solve complex computing and software engineering problems by applying principles of engineering, computing, science, mathematics, and other relevant disciplines (1a-e).
 - Design, implement and evaluate computing solutions that meet specified requirements with consideration of public health, safety, and welfare concerns, as well as global, cultural, social, environmental, and economic factors (2a-g).
 - Communicate effectively with a range of audiences in a variety of professional contexts (3a-f).
● Recognize ethical and professional responsibilities in software development and make informed judgments based on legal and ethical principles, and with consideration of broader impacts (4a, b, d, f).
● Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives (5a-g).
● Apply appropriate computing and engineering approaches, theories, and fundamentals to conduct appropriate experimentation, analyze and interpret data, use engineering judgment to draw conclusions, and produce solutions (6a-d).
● Acquire and apply new knowledge as needed, using appropriate learning strategies (7a-g).

7. **Brief list of topics to be covered**
 ● Project management
 ● Engineering solutions for real world open-ended problems
 ● Communication with clients, mentors, teammates, and collaborators
 ● Team-based software development
 ● Tools for software development and testing
 ● Collaboration tools for professional software development such as Git
 ● Writing technical documents
 ● Product packaging and delivery to clients
 ● Job search processes, developing contacts, and communication