1. **Course number and name**
 CptS 350: Design and Analysis of Algorithms

2. **Credits and contact hours**
 3 credits, 3 lecture hours

3. **Instructor’s or course coordinator’s name**
 Zhe Dang

4. **Textbook, title, author, and year**

5. **Specific course information**
 a. **Catalog description**: Analysis of data structures and algorithms; computational complexity and design of efficient data-handling procedures.
 b. **Prerequisites or corequisites**: CPT S 223 with a C or better or CPT S 233 with a C or better; CPT S 317 with a C or better; certified major in Computer Science, Computer Engineering, Electrical Engineering, or Software Engineering.

6. **Specific goals for the course**
 By the end of the course, students will be able to
 - Analyze complexities of algorithms using recurrence growth rate estimation (1b).
 - Design algorithms using basic algorithm design principles learned in the course to solve problems (1a,1c,1e).
 - Understand and use symbolic algorithms in manipulating large data structures (1d,1c,6a,7a,7f).

7. **Brief list of topics to be covered**
 - What is an algorithm? Fundamentals
 - Worst-case and average time complexities
 - Comparison-based sorting: lower complexity bound
 - Quick _Select_: complexity analysis
 - MergeInsert: complexity analysis
 - Divide and conquer: Karatsuba algorithm and closest pair algorithm
 - Dynamic programming: LCS algorithm and a generalized LCS algorithm, applications in bioinformatics
 - Greedy algorithms: Huffman code and analysis
 - Amortized analysis: aggregate method, accounting method, potential method
 - Basic graph algorithms and analysis: DFS, BFS, topological sort, minimal spanning tree, shortest path
 - Advanced graph algorithms and applications: SCC, machines/programs as graphs, search over symbolic graphs
 - Number-theoretic algorithms: RSA and security protocols
 - NP-completeness, many-to-one reduction, SAT, 3SAT
• Automata-theoretic algorithms