1. **Course number and name**
 CptS 223: Advanced Data Structures in C++

2. **Credits and contact hours**
 3 credits, 3 lecture hours

3. **Instructor’s or course coordinator’s name**
 Aaron Crandall

4. **Textbook, title, author, and year**

5. **Specific course information**
 a. **Catalog description:** Advanced data structures, object oriented programming concepts, concurrency, and program design principles taught in C/C++ programming language.
 b. **Prerequisites or corequisites:** CptS 122, MATH 216 (concurrent enrollment okay).

6. **Specific goals for the course**
 By the end of the course, students will be able to
 ● Analyze and compare a variety of data structures (1b, 2a, 2b)
 ● Design efficient algorithms (2g, 6a)
 ● Apply the knowledge gained in the class in order to solve real-world problems using different data structures and design techniques (1c, 1d, 2e)
 ● Implement software solutions in C++ in the Linux OS environment (6a, 7g)
 ● Use industry standard tools for software development including Git, Valgrind, and testing tools (1e, 6b, 6d)

7. **Brief list of topics to be covered**
 ● Software development in C++
 ● Introduction to the C++ Software Template Library (STL)
 ● Advanced data structures and algorithms:
 ○ Hashtables: Separate chaining, linear/quadratic probing
 ○ Tree: BST, AVL, Red-Black, B+
 ○ Heaps
 ○ Sorting: Bubblestort, Insertion sort, quicksort, Heapsort, Mergesort
 ○ Graphs: Dijkstra’s algorithm, Topological sort
 ● Algorithm analysis with Big-O for both time and space complexity
 ● Empirically comparing algorithms for space and time in different applications
 ● Linux use, notably command line tools g++ and GNU Make
 ● Git version control to manage software projects
• Valgrind, and software testing tools