1. **Course number and name**
 CptS 122: Data Structures C/C++

2. **Credits and contact hours**
 4 credits, 3 lecture hours, 3 lab hours

3. **Instructor’s or course coordinator’s name**
 Andy O’Fallon

4. **Textbook, title, author, and year**

 Other supplemental materials

5. **Specific course information**
 a. **Catalog description:** Advanced programming techniques: data structures, recursion, sorting and searching, and basics of algorithm analysis taught in C/C++ programming language.
 b. **Prerequisites or corequisites:** CPT S 121 with a C or better.

6. **Specific goals for the course**
 By the end of the course, students will be able to
 - Design, apply, and implement data structures including lists, stacks, queues, and binary trees (1a, 1b, 1d, 1e, 6a, 6b, 7b, 7d, 7f, 7g).
 - Apply and implement several sorting algorithms (1a, 1b, 1d, 1e, 6a, 6b, 7b, 7d, 7f, 7g).
 - Analyze algorithmic complexity (6c).
 - Design, implement, test, and debug C++ programs applying modern tools and techniques (1a, 1b, 1d, 1e, 6a, 6b, 7b, 7d, 7f, 7g).
 - Analyze a specification of a problem of moderate complexity, and construct a structured, elegant C++ program that solves the problem with the most appropriate data structure(s) (1a, 1b, 1d, 1e, 6a, 6b, 7b, 7d, 7f, 7g).
 - Design and articulate solutions to lab problems with classmates (1a, 1b, 1d, 1e, 3a, 3b, 5b, 5g).
 - Identify and implement test cases to edge scenarios in pseudocode and/or C++ code (6b, 6d).
 - Identify, analyze, and solve C++ code and data structures interview questions in prep for internships (1a, 1b, 1c, 1d, 1e).
7. Brief list of topics to be covered
 ● Data Structures
 ● Linked Lists
 ● Stacks
 ● Queues
 ● Binary Search Trees
 ● Recursion
 ● Software Design and Engineering Concepts
 ● Problem Solving Strategies
 ● C++ Classes and Objects
 ● Container Classes
 ● Value Classes
 ● UML Design Models
 ● Generic Classes
 ● Templates
 ● Operator Overloading
 ● Function Overloading
 ● Algorithmic Analysis (Big-O)
 ● Abstract Data types
 ● Inheritance
 ● Sorting Algorithms
 ● Polymorphism
 ● Intro to Graphics
 ● Exception Handling
 ● Standard Template Library
 ● Const, static, friend, pass-by-reference